Differentiate porosity types with the context parameter

This is a thin section image of a carbonate rock acquired with digital film scanner, essentially composed of nummulites, in which porosity has been dyed in blue.

- 1. Open the image "nummulites.tif"
 - a. Click **OK** to optimize the data structure of the image (tiling) and save it with a new name (this operation is necessary for large image and computer with few RAM)

2. Select the Object Extraction tool and start Color and gray intensity threshold

- a. In Threshold menu, select IHS (Intensity Hue Saturation) channel
- b. In the second histogram, move triangles to select only the blue hue
- c. Move the **magnifying lens** to check if the red selection matches properly with the porosity (set lens to source image and 1x) Another possibility to do it is to activate the **Inverse** selection in the histogram
- d. In the Assign a class menu, select a class (if there is no class, use Class Editor to add a new class)
- e. Click **OK** to perform the object creation
- Note: The histograms represent the visible part of the image. If the image has been moved, the **Refresh** button must be pressed to match the histograms with the visible part of the image.

- 3. Select the **Background** tool and add a new background
 - a. In Threshold menu, select IHS (Intensity Hue Saturation) channel
 - b. In the second histogram, move triangles to select only the blue hue and check **Inverse** button. In the first histogram (Intensity), select the first mode (dark values)
 - c. In the Set a name menu, enter a name (e.g. Matrix) and choose a color
 - d. Click **OK** to make the background

Note: Once created, the background can be displayed with **Display** tab.

- 4. The context parameter creates an external border of every object and counts the border pixels superposed with pixels of a selected background. To create a context parameter:
 - a. In the **Project** menu, click on **Preferences** to open project properties
 - b. In the **Project Properties** window, select **Object Extraction** menu and click on the button **Compute Additional Parameters**
 - c. Select the Context item and click on Add button
 - d. Enter a context name (e.g. matrix context)
 - e. In the Compute Context window, select the appropriate background
 - f. Choose a border width (external border in pixel of every object)
 - g. Choose a progression (from internal border layer to external border layer)
 - h. Click **OK**

Note: Additional parameters can not be saved in the project file and in the learning file of the supervised classification.

Project Properties	\mathbf{X}	
 Display Mode Magnifying Lens Note Measure 1D Measure 2D Object Extraction ● Point Counting 	Object Extraction Line width : 1 Fill drawing Compute Additional Parameters Oposition Position Position Moments Feret diameters Context Default Reset Apply	Compute Context Background : Matrix : 37.08% Border width : 15 Progression : No OK Cancel
Set to default project	OK Cancel	

5. In **Object Extraction** tool, choose **Classification** tab

- a. Select **Single parameter** radio button
- b. In the **Single parameter** window, choose the context parameter created above.
- c. Define a range with **min** and **max** (e.g. 0 0.35)
- d. Choose a **Target class** according to the range (e.g. intranummulite porosity)
- e. Click OK
- f. For the second class, proceed in the same way as above (select the other part of the range, 0.351 1) or deselect the previous target class (intranummulite porosity) in the **Display** tab and apply the second class (internummulite porosity) to all the visible pores
- g. To see result, click on **Result View** button
- Note: A class is definitely applied when the **OK** button is pressed.
 - Only the visible classes are used in classification methods.

Close

Internummulite porosity 49.39%

Save Pie Chart